
 
[Vanve* et al., 5(7): July, 2016]  ISSN: 2277-9655 

IC™ Value: 3.00                                                                                                         Impact Factor: 4.116 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [756] 

IJESRT 
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 

TECHNOLOGY 

OGEDIDS: OPPOSITIONAL GENETIC PROGRAMMING ENSEMBLE FOR 

DISTRIBUTED INTRUSION DETECTION SYSTEMS 
Shrikant Vanve*, Prof. Sarita Patil 

* G.H. Raisoni College of Engg & Management Research, Pune 

G.H. Raisoni College of Engg & Management Research, Pune 

 

DOI: 10.5281/zenodo.57737 

ABSTRACT 
Due to the wide range application of internet and computer networks, the securing of information is indispensable 

one. In order to secure the information system more effectively, various distributed intrusion detection has been 

developed in the literature. In this paper, we utilize the oppositional genetic algorithm for Distributed Network 

Intrusion Detection utilizing the oppositional set based population selection mechanism. This system is mostly useful 

for detecting unauthorized & malicious attack in distributed network. Here, Oppositional genetic algorithm (OGA) 

is utilized in OGA ensemble for learning the intrusion detection behavior of networks. Also, OGA ensemble is 

adapted for distributed intrusion detection system by creating the network profile which classifies normal and 

abnormal behavior of network. For experimentation, network profile contains different classifier which uses training 

data set of KDD Cup 99 to generate intrusion rules. For validation, we utilize the confusion matrix, sensitivity, 

specificity and accuracy and the results are proved that the proposed OGEdIDS are better for intrusion detection. 

 

KEYWORDS: Genetic algorithm, intrusion detection, ensemble learner, KDD cup 99, accuracy. 

 

     INTRODUCTION
Nowadays, networked computer systems play an increasingly important role in our society and its economy. They 

have become the targets of a wide array of malicious attacks that invariably turn into actual intrusions. This is the 

reason computer security has become an essential concern for network administrators. Intrusion detection as is an 

approach to counter the computer and networking attacks and misuses. There are two generally accepted categories 

of intrusion detection techniques: misuse detection and anomaly detection. Misuse detection refers to techniques that 

characterize known methods to penetrate a system. Anomaly detection refers to techniques that define and characterize 

normal or acceptable behaviors of the system [1]. 

 

Intrusion Detection Systems (IDS) are primarily focused on identifying possible incidents, logging information about 

them, attempting to stop them, and reporting them to security administrators in real-time, or near real-time, and those 

that process audit data with some delay (non-real-time). In addition, organizations use IDSs for other purposes, such 

as identifying problems with security policies, documenting existing threats, and deterring individuals from violating 

security policies.  A typical Intrusion Detection System is shown in figure 1. 

 

 
Figure 1. Very simple intrusion detection system 

http://www.ijesrt.com/


 
[Vanve* et al., 5(7): July, 2016]  ISSN: 2277-9655 

IC™ Value: 3.00                                                                                                         Impact Factor: 4.116 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [757] 

Genetic algorithm is a family of computational models based on principles of evolution and natural selection. These 

algorithms convert the problem in a specific domain into a model by using a chromosome-like data structure and 

evolve the chromosomes using selection, recombination, and mutation operators. Genetic Algorithm (GA) has been 

used in different ways in IDSs. One network connection and its related behavior can be translated to represent a rule 

to judge whether or not a real-time connection is considered an intrusion. These rules can be modeled as chromosomes 

inside the population. The population evolves until the evaluation criteria are met. The generated rule set can be used 

as knowledge inside the IDS for judging whether the network connection and related behaviors are potential intrusions. 

 

In this paper, OGEdIDS, Oppositional Genetic programming Ensemble is developed for Distributed Intrusion 

Detection Systems. This proposed distributed data mining algorithm utilize the oppositional genetic algorithm for 

Distributed Network Intrusion Detection utilizing the oppositional set based population selection mechanism. Here, 

Oppositional genetic algorithm (OGA) is utilized in OGA ensemble for learning the intrusion detection behavior of 

networks. Also, OGA ensemble is adapted for distributed intrusion detection system by creating the network profile 

which classifies normal and abnormal behavior of network. The paper is organized as follows: Section 2 presents the 

literature review and section 3 presents the proposed distributed intrusion detection system. Section 4 presents the 

results and conclusion is given section 5. 

 

LITERATURE REVIEW 
Several Genetic Algorithms (GAs) and Genetic Programming (GP) has been used for detecting intrusion detection of 

different kinds in different scenarios [8-14]. There are several papers related to IDS which has certain level of impact 

in network security.  Li [2] described a method using GA to detect anomalous network intrusion. The approach 

includes both quantitative and categorical features of network data for deriving classification rules. However, the 

inclusion of quantitative feature can increase detection rate but no experimental results are available. Information gain 

could become more relevant when attribute interactions are taken into account. This phenomenon is associated with 

rule interestingness. 

 

Goyal and Kumar [3] described a GA based algorithm to classify all types of smurf attack using the training dataset. 

Lu and Traore [4] used historical network dataset using GP to derive a set of classification. They used support 

confidence framework as the fitness function and accurately classified several network intrusions. But their use of 

genetic programming made the implementation procedure very difficult and also for training procedure more data and 

time is required. Xia et al. [5] used GA to detect anomalous network behaviors based on information theory. Some 

network features can be identified with network attacks based on mutual information between network features and 

type of intrusions and then using these features a linear structure rule and also a GA is derived. The approach of using 

mutual information and resulting linear rule seems very effective because of the reduced complexity and higher 

detection rate. Gong et al. [6] presented an implementation of GA based approach to Network Intrusion Detection 

using GA and showed software implementation. The approach derived a set of classification rules and utilizes a 

supportconfidence framework to judge fitness function.  

 

PROPOSED OPPOSITIONAL GENETIC PROGRAMMING ENSEMBLE FOR DISTRIBUTED 

INTRUSION DETECTION SYSTEMS 
In this paper, Oppositional Genetic programming Ensemble for Distributed Intrusion Detection Systems is developed. 

This works aims to develop a distributed data mining algorithm based on the ensemble paradigm that employs an 

Oppositional Genetic Programming-based classifier as component learner in order to improve the detection capability 

of the system [7].   

 

Oppositional genetic algorithm (OGA) 
This section presents the oppositional genetic algorithm (OGA). The main difference in an oppositional GP, with 

respect to a genetic algorithm, is its oppositional set based population selection mechanism and the genetic operators 

(crossover, mutation) adopted. At the beginning, initial population is generated and the initial population is modified 

based on the oppositional set concept. Then, the fitness of each individual is evaluated. Then, at each generation, every 

chromosome undergoes one of the genetic operators (reproduction, crossover, mutation) depending on the probability 

test. If crossover is applied, the mate of the current individual is selected as the neighbor having the best fitness, and 

the offspring is generated. The current chromosome is then replaced by the best of the two offsprings if the fitness of 

http://www.ijesrt.com/


 
[Vanve* et al., 5(7): July, 2016]  ISSN: 2277-9655 

IC™ Value: 3.00                                                                                                         Impact Factor: 4.116 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [758] 

the latter is better than that of the former. The evaluation of the fitness of each classifier is calculated on the entire 

training data. After the execution of the number of generations defined by the user, the individual with the best fitness 

represents the classifier. Figure 2 shows the algorithmic description of the OGA. 

 

Algorithm: OGA  

Start 

Generate initial population  

Compute opposition set-based population 

while not MaxNumberOfGeneration do 

for each chromosome i in the population do 

produce the offspring by crossing ti and tj 

Produce the offspring by mutation 

evaluate the fitness of the offspring 

replace ti with the best of the two offspring if its fitness is better 

than that of ti 

evaluate the fitness of the new ti 

Keep the best individual in the population 

Endfor 

end while 

end 

Figure 2. The algorithm OGA 

 

OGA ensemble: OGA for ensemble learner 
The OGA is applied here for ensemble learner. Ensemble is a learning paradigm where multiple component learners 

are trained for the same task by a learning algorithm, and the predictions of the component learners are combined for 

dealing with new unseen instances. Let   NiyxS ii ,.....1,   be a training set where ix , called example or tuple or 

instance, is an attribute vector with m attributes and iy  is the class label associated with ix . A predictor (classifier), 

given a new example, has the task to predict the class label for it. Ensemble techniques build T predictors, each on a 

different training set, then combine them together to classify the test set. Boosting was introduced for boosting the 

performance of any “weak” learning algorithm, i.e. an algorithm that “generates classifiers which need only be a little 

bit better than random guessing”. 

The boosting algorithm, called AdaBoost, adaptively changes the distribution of the training set depending 

on how difficult each example is to classify. Given the number T of trials (rounds) to execute, T weighted training sets 

S1, S2, . . . , ST are sequentially generated and T classifiers C1, . . . ,CT are built to compute a weak hypothesis ht. Let 
t
iw denote the weight of the example ix , at trial t. At the beginning 

n
wi

11   for each ix ,. At each round t = 1, . . . , 

T, a weak learner Ct, whose error 
t  is bounded to a value strictly less than 1/2, is built and the weights of the next 

trial are obtained by multiplying the weight of the correctly classified examples by  ttt   1  and renormalizing 

the weights so that .11 

i

t
iw Thus “easy” examples get a lower weight, while “hard” examples, that tend to be 

misclassified, get higher weights. This induces AdaBoost to focus on examples that are hardest to classify. The boosted 

classifier gives the class label y that maximizes the sum of the weights of the weak hypotheses predicting that label, 

where the weight is defined as log(1/βt). The final classifier hf is defined as follows:  

 



























 

T

t

ttf yxhh ,
1

logmaxarg


 

 

Ensemble techniques have been shown to be more accurate than component learners constituting the ensemble, thus 

such a paradigm has become a hot topic in recent years and has already been successfully applied in many application 

fields. A key feature of the ensemble paradigm, often not much highlighted, concerns its ability to solve problems in 

a distributed and decentralized way. We adopt such a paradigm to derive a network profile for modeling distributed 

intrusion detection systems using OGA as component learner. 

http://www.ijesrt.com/


 
[Vanve* et al., 5(7): July, 2016]  ISSN: 2277-9655 

IC™ Value: 3.00                                                                                                         Impact Factor: 4.116 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [759] 

An OGA ensemble offers several advantages over a monolithic GA that uses a single GP to solve the intrusion 

detection task. First, it can deal with very large data sets. Second, it can make an overall system easier to understand, 

modify and implement in a distributed way. Finally, it is more robust than a monolithic GP, and can show graceful 

performance degradation in situations where only a subset of GPs in the ensemble are performing correctly. One of 

the disadvantages of such an approach is the loss of interaction among the individual GPs during the learning phase. 

In fact, the individual GPs are often trained independently or sequentially. This does not take into account the 

interdependence that exists among the data and could bring to an ensemble overfitting them and having weak 

characteristics of generalization. To this aim, we propose a method that emphasizes the OGA in the ensemble during 

the building of the solution. 

 

Adapting OGA ensemble for distributed intrusion detection system 
Once the OGA ensemble is developed, it is then applied for distributed intrusion detection system. The pseudo-code 

of the OGEdIDS algorithm is shown in figure 3. Each island is furnished with a OGA algorithm enhanced with the 

boosting technique AdaBoost. OGA, a population initialized with random individuals, and operates on the local audit 

data weighted according to a uniform distribution. The selection rule, the replacement rule and the asynchronous 

migration strategy are specified in the OGA algorithm. Each island generates the OGA ensemble by running for a 

certain number of iterations, necessary to compute the number of boosting rounds. During the boosting rounds, each 

classifier maintains the local vector of the weights that directly reflect the prediction accuracy on that site. At each 

boosting round the hypotheses generated by each classifier are exchanged among all the processors in order to produce 

the ensemble of predictors. In this way each island maintains the entire ensemble and it can use it to recalculate the 

new vector of weights. After the execution of the fixed number of boosting rounds, the classifiers are used to evaluate 

the accuracy of the classification algorithm for intrusion detection on the entire test set.  

 

Given a network constituted by P nodes,  each having a data 

set Sj 

For j = 1, 2, . . ., P (for each island in parallel) 

Initialize the weights associated with each tuple 

Initialize the population Qj with random individuals 

end parallel for 

For t = 1,2,3, . . ., T (boosting rounds) 

For j = 1, 2, . . ., P (for each island in parallel) 

Train OGA on Sj using a weighted fitness according to the 

weight distribution 

Compute a weak hypothesis 

Exchange the hypotheses among the P islands 

Update the weights 

end parallel for 

end for t 

Output the hypothesis 

Figure 3. The OGEdIDS algorithm 
 

RESULTS AND DISCUSSION 
This section presents the experimental results and validation of the proposed OGEdIDS algorithm. 

 

Data sets description 
We performed experiments over the KDD Cup 1999 Data set [15]. Though this, data set has been judged not 

representative of a realistic IDS scenario, it is a reference data set, extensively used to compare results of different 

intrusion detection techniques. The data set comes from the 1998 DARPA Intrusion Detection Evaluation Data and 

contains a training data consisting of 7 weeks of network based attacks inserted in the normal data, and 2 weeks of 

network-based attacks and normal data for a total of 4,999,000 of connection records described by 41 characteristics.  

 

The main categories of attacks are four: DoS (Denial of Service), R2L (unauthorized access from a remote machine), 

U2R (unauthorized access to a local superuser privileges by a local unprivileged user), PROBING (surveillance and 

http://www.ijesrt.com/


 
[Vanve* et al., 5(7): July, 2016]  ISSN: 2277-9655 

IC™ Value: 3.00                                                                                                         Impact Factor: 4.116 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [760] 

probing). However a smaller data set consisting of the 10% the overall data set is generally used to evaluate algorithm 

performance. In this case the training set consists of 494,020 records among which 97,277 are normal connection 

records, while the test set contains 311,029 records among which 60,593 are normal connection records. Table 1 shows 

the distribution of each attack type in the training and the test set. Note that the test set is not from the same probability 

distribution as the training data, in fact it includes specific attack types not in the training data. This makes the task 

more realistic. 

 

Table 1 shows the distribution of each intrusion type in the training and the test set. 

Dataset normal probe dos u2r r2l Total 

Train 

(“kddcup.data_10_percent”) 
97280 4107 391458 52 1124 494021 

Test (“corrected”) 60593 4166 229853 228 16189 311029 

 

Performance metrics 
To evaluate the proposed system, three standard metrics of sensitivity, specificity and accuracy developed for network 

intrusions, have been used. Table 1 shows the confusion matrix which is a table with two rows and two columns that 

report the number of false positives, false negatives, true positives, and true negatives. This allows more detailed 

analysis than mere proportion of correct guesses (accuracy). Accuracy is not a reliable metric for the real performance 

of a classifier, because it will yield misleading results if the data set is unbalanced (that is, when the number of samples 

in different classes vary greatly).  

Sensitivity=TP/(TP+FN) 

Specificity= TN/(FP+TN) 

Accuracy=(TP+TN)/(TP+TN+FP+FN) 

 

Performance evaluation 
This section presents the performance evaluation of the proposed IDS using KDD cup data. Figure 4 shows the 

confusion metrics-based graph for the different percentage of training data. The better performance is achieved by the 

proposed IDS when the percentage of training data is equal to 60%. Here, TP, FP, TN and FN of the methods are 790, 

54, 737, and 107. Similarly Figure 5 shows the performance graph of the proposed IDS using sensitivity, specificity 

and accuracy. Here, the better accuracy of 90.41% is achieved when the percentage of training data is equal to 60%. 

 

 

Figure 4 Performance graph of confusion metrics 

0

100

200

300

400

500

600

700

800

900

60 70 80 90

M
et

ri
cs

% of training data

TP

FP

TN

FN

http://www.ijesrt.com/


 
[Vanve* et al., 5(7): July, 2016]  ISSN: 2277-9655 

IC™ Value: 3.00                                                                                                         Impact Factor: 4.116 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [761] 

 

 

Figure 5 Performance graph using sensitivity, specificity and accuracy 

CONCLUSION 
A distributed intrusion detection approach based on Oppositional Genetic Programming and extended with the 

ensemble paradigm, to classify malicious or unauthorized network activity has been presented. Here, OGP ensembles 

are built using a distributed approach based on a hybrid model that combines the ensemble learner and the OGA. The 

combination of these two models provides an effective implementation of distributed Intrusion Detection Systems, 

namely, OGEdIDS. A main advantage of the distributed architecture is that it enables for flexibility, extensibility, and 

efficiency since each node of the network works with its local data, and communicates with the other nodes, to obtain 

the results, only the local model computed, but not the data. For experimentation, KDD Cup 99 is used and the 

validation is performed using confusion matrix, sensitivity, specificity and accuracy and the results are proved that 

the proposed OGEdIDS are better for intrusion detection. 

 

REFERENCES 
[1] M. Botha, R. Solms, “Utilizing Neural Networks for Effective Intrusion Detection”, ISSA, 2004. 

[2] W. Li, “Using Genetic Algorithm for Network Intrusion Detection”. “A Genetic Algorithm Approach to 

Network Intrusion Detection”. SANS Institute, USA, 2004 

[3] Anup Goyal, Chetan Kumar, “GA-NIDS: A Genetic Algorithm based Network Intrusion Detection System”, 

2008. 

[4] W. Lu, I. Traore, “Detecting New Forms of Network Intrusion Using Genetic Programming”. Computational 

Intelligence, vol. 20, pp. 3, Blackwell Publishing, Malden, pp. 475-494, 2004. 

[5] T. Xia, G. Qu, S. Hariri, M. Yousif, “An Efficient Network Intrusion Detection Method Based on Information 

Theory and Genetic Algorithm”, Proceedings of the 24th IEEE International Performance Computing and 

Communications Conference (IPCCC ‘05), Phoenix, AZ, USA. 2005. 

[6] R. H. Gong, M. Zulkernine, P. Abolmaesumi, “A Software Implementation of a Genetic Algorithm Based 

Approach to Network Intrusion Detection”, 2005.  

[7] Folino, G., Pizzuti, C., and Spezzano, G. "An Ensemble Based Evolutionary Framework For Coping With 

Distributed Intrusion Detection", Genetic Programming and Evolvable Machines 11, 2, 2010, 131-146. 

[8] Chi Hoon Lee, Sung Woo Shin and Jin Wook Chung, “Network Intrusion Detection Through Genetic Feature 

Selection”, SNPD, IEEE, 2006. 

[9] Saqib Ashfaq, M.Umar Farooq and Asim Karim, “Efficient Rule Generation for Cost- Sensitive Misuse 

Detection Using Genetic Algorithms”, IEEE, 2006. 

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

60 70 80 90

M
et

ri
cs

% of training data

Sensitivity

Specificity

Accuracy

http://www.ijesrt.com/


 
[Vanve* et al., 5(7): July, 2016]  ISSN: 2277-9655 

IC™ Value: 3.00                                                                                                         Impact Factor: 4.116 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [762] 

[10] Melanie Middlemiss and Grant Dick, “Weighted Feature Extraction Using a Genetic Algorithm for Intrusion 

Detection”, 2003 Congress on Evolutionary Computation (cec-03) 2003, pp.1669-1675. 

[11] Nalini N and Raghavendra Rao G., “Network Intrusion Detection via a Hybrid of Genetic Algorithms and 

Principal Component Analysis”, IEEE, 2006. 

[12] Hua Zhou, Xingu Meng and Li Zhang, “Application of Support Vector Machine and Genetic Algorithm to 

Network Intrusion Detection”, IEEE, 2007. 

[13] Yong Wang, Dawu Gu, Xiuxia Tian and Jing Li, “Genetic Algorithm Rule Definition for Denial of Services 

Network Intrusion Detection”, International Conference on Computational Intelligence and Natural 

Computing, IEEE, 2009, pp.99-102. 

[14] Chen Zhongmin, Feng Jianyuan, Xu Sheng and Xu Renzuo, “The research of Intrusion Detection Technology 

Based on Genetic Algorithms”, International Conference on Net-works Security, Wireless Communications 

and Trusted Computing, IEEE, 2009. 

[15] KDD Cup 1999: Data; http://www.kdd.org/kddcup/index.php?section=1999&method=data 

 

 

 

 

   

http://www.ijesrt.com/
http://www.kdd.org/kddcup/index.php?section=1999&method=data

